\qquad
Date A\#13

Goal: Apply the scale changes that can be done with the graph of any relation to the graphs of the sine, cosine, and tangent functions, where they have special meaning.

Review: Considering the Scale-Change Theorem, explain the changes relative to the parent function: a. $2 y=\left(\frac{x}{3}\right)^{2}$ b. $\frac{y}{-4}=(3 x)^{3}$	Questions
Sine Waves	
Period: Amplitude:	
Example 1: Consider the equation $y=6 \cos \left(\frac{x}{3}\right)$. a. Explain its relationship to the parent function $y=\cos x$. b. Identify its period and amplitude.	
Example 2: Consider the equation $y=3.5 \sin \left(\frac{4 x}{3}\right)$. a. Explain its relationship to the parent function $y=\sin x$. b. Identify its period and amplitude.	

Questions

Theorem (Properties of Sine Waves)

The graphs of the functions defined by $y=b \sin \left(\frac{x}{a}\right)$ and $y=b \cos \left(\frac{x}{a}\right)$ have amplitude $=|b|$ and period $=2 \pi|a|$.

Why must the amplitude be an absolute value?

Example 3: Find the function from the graph.

1. Find amplitude:
2. Find period:
3. Narrow down options:

Example 4: The graph below shows $y=\cos x$ and its image under a scale change. Find an equation for the image.

The Frequency of the Sine Wave

In Example 4, notice that $y=\cos x$ completes \qquad cycles for every one cycle the images competes. We say that $y=\cos x$ has
\qquad times the frequency. In general, the frequency of a
periodic function is the \qquad of the period.

Example 5: A tuning fork vibrates with a frequency of 512 cycles per second. The intensity of the tone is the result of a vibration whose maximum pressure is $22 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$. Find an equation to model the sound wave produced by the tuning fork.

Example 6: A tuning fork vibrates with a frequency of 440 cycles per second. The intensity of the tone is the result of a vibration whose maximum pressure is $15 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$. Find an equation to model the sound wave produced by the tuning fork.

Questions
Example 7: Without using technology, determine how many solutions each equation below has on the interval $0 \leq x \leq 2 \pi$. Confirm your answer with a graph.
a. $\cos (3 x)=0.8$

b. $5 \tan \left(\frac{x}{2}\right)=3$

Summary:

